Even Self-Aware Consumers Are Overconfident

Matthew N. White¹ Christopher D. Carroll² Daniel J. Grodzicki³ David C. Low⁴

```
1Econ-ARK (mnwhite@gmail.com)
2JHU (ccarroll@jhu.edu)
3Ind (dan.j.grodzicki@gmail.com)
4CFPB (david.low@cfpb.gov)
```

December 14, 2024

The views expressed are those of the authors and do not necessarily reflect those of the Consumer Financial Protection Bureau or the United States.

Self-Awareness and Overconfidence

Self-aware consumers know they can make mistakes.

They can still be **overconfident**, underestimating their likelihood of making mistakes.

Self-Awareness and Overconfidence

Self-aware consumers know they can make mistakes.

They can still be **overconfident**, underestimating their likelihood of making mistakes.

Academics and policymakers have sought to understand:

- The extent of consumer self-awareness and overconfidence
- The implications for regulation

Our Deferred Interest ("DI") Setting

Promotional credit card, 0% APR if paid in full before end of promotional period

Our Deferred Interest ("DI") Setting

Promotional credit card, 0% APR if paid in full before end of promotional period

- High interest otherwise, accumulated along the way!
- Free credit... as long as you succeed at the promotion

Great for studying consumer self-awareness and overconfidence:

Our Deferred Interest ("DI") Setting

Promotional credit card, 0% APR if paid in full before end of promotional period

- High interest otherwise, accumulated along the way!
- Free credit... as long as you succeed at the promotion

Great for studying consumer self-awareness and overconfidence:

- Obviously best" payments: minimum required, then pay remainder in final month
- ② Basically no one does this
- **1** High failure rates \Longrightarrow attention from regulators

Questions of Interest

• What must borrowers believe about themselves to rationalize their observed repayment behavior?

Questions of Interest

- What must borrowers believe about themselves to rationalize their observed repayment behavior?
- How do those beliefs compare to actual probabilities?
- Is there evidence that borrowers learn from experience?

Questions of Interest

- What must borrowers believe about themselves to rationalize their observed repayment behavior?
- How do those beliefs compare to actual probabilities?
- Is there evidence that borrowers learn from experience?
- How costly are repayment mistakes for borrowers?
- How would borrowers behave if they knew the truth?

Our Approach and Main Findings

Specify a theoretical model of consumer behavior:

- Informed by institutional context and data
- Use data to estimate parameters (beliefs)
- Allows us to isolate impacts of specific behavioral factors

Our Approach and Main Findings

Specify a theoretical model of consumer behavior:

- Informed by institutional context and data
- Use data to estimate parameters (beliefs)
- Allows us to isolate impacts of specific behavioral factors

Model estimates indicate that:

- Many borrowers are self-aware, most underestimate risk
- The riskiest borrowers are also the most over-confident
- Self-insight is most valuable to the riskiest borrowers

Our Approach and Main Findings

Specify a theoretical model of consumer behavior:

- Informed by institutional context and data
- Use data to estimate parameters (beliefs)
- Allows us to isolate impacts of specific behavioral factors

Model estimates indicate that:

- Many borrowers are self-aware, most underestimate risk
- The riskiest borrowers are also the most over-confident
- Self-insight is most valuable to the riskiest borrowers
- Eliminating overconfidence and mistakes increases average consumer benefits by \$75 ($\approx 250\%$ of baseline!)

Transaction-Level Deferred Interest Account Data

Administrative data from single retailer covering 12-month DI promotions in 2011-2013, matched to credit bureau data. Observe age, income, credit score, utilization rate of available credit, **sequence of payments** made.

We focus on creditworthy and sophisticated borrowers:

Transaction-Level Deferred Interest Account Data

Administrative data from single retailer covering 12-month DI promotions in 2011-2013, matched to credit bureau data. Observe age, income, credit score, utilization rate of available credit, **sequence of payments** made.

We focus on creditworthy and sophisticated borrowers:

- \bullet Total revolving balance $<2\times$ monthly income.
- No debt 30+ days delinquent in prior 24 months
- 25 to 65 years old

Transaction-Level Deferred Interest Account Data

Administrative data from single retailer covering 12-month DI promotions in 2011-2013, matched to credit bureau data. Observe age, income, credit score, utilization rate of available credit, **sequence of payments** made.

We focus on creditworthy and sophisticated borrowers:

- \bullet Total revolving balance $<2\times$ monthly income.
- No debt 30+ days delinquent in prior 24 months
- 25 to 65 years old

Also restrict attention to those with:

- A single promotional card
- No non-promotional purchases on it

Estimation sample: **75,191** "clean" deferred interest accounts:

- Trimmed range: \$350 to \$4200 (only cuts about 500 accounts)
- Middle 70% of debt distribution: \$1000 to \$2000

Estimation sample: **75,191** "clean" deferred interest accounts:

- Trimmed range: \$350 to \$4200 (only cuts about 500 accounts)
- Middle 70% of debt distribution: \$1000 to \$2000
- Average credit score: 760; more above 800 than below 700!
- \bullet Only 1/3 of borrowers use more than 20% of their available credit

Estimation sample: **75,191** "clean" deferred interest accounts:

- Trimmed range: \$350 to \$4200 (only cuts about 500 accounts)
- Middle 70% of debt distribution: \$1000 to \$2000
- Average credit score: 760; more above 800 than below 700!
- ullet Only 1/3 of borrowers use more than 20% of their available credit
- Mean personal income: about \$86,500
- Age distribution looks like (conditional) population distribution

Estimation sample: **75,191** "clean" deferred interest accounts:

- Trimmed range: \$350 to \$4200 (only cuts about 500 accounts)
- Middle 70% of debt distribution: \$1000 to \$2000
- Average credit score: 760; more above 800 than below 700!
- ullet Only 1/3 of borrowers use more than 20% of their available credit
- Mean personal income: about \$86,500
- Age distribution looks like (conditional) population distribution
- Very restricted dataset: MNW has never seen or worked with the data!

Want to specify structural model of DI debt repayment, but how?

• Account mechanics: Straightforward, easy

- Account mechanics: Straightforward, easy
- Payment choices: Anything goes? Choose whatever?
- Behavior: Are choices optimizing? It's a \$1500 debt!

- Account mechanics: Straightforward, easy
- Payment choices: Anything goes? Choose whatever?
- Behavior: Are choices optimizing? It's a \$1500 debt!
- Preferences: Obvious costs/penalties, but what's the upside?

- Account mechanics: Straightforward, easy
- Payment choices: Anything goes? Choose whatever?
- Behavior: Are choices optimizing? It's a \$1500 debt!
- Preferences: Obvious costs/penalties, but what's the upside?
- Beliefs: What do we want to learn about what they believe?

- Account mechanics: Straightforward, easy
- Payment choices: Anything goes? Choose whatever?
- Behavior: Are choices optimizing? It's a \$1500 debt!
- Preferences: Obvious costs/penalties, but what's the upside?
- Beliefs: What do we want to learn about what they believe?
- Outcomes: What are we even trying to get the model to "fit"?

Categorization of Non-terminal Payments

 \equiv

Most Borrowers Pay Off Early, but Many Others Fail

Timing of Exit Varies with Observable Characteristics

Most Borrowers Who Fail Didn't "Need" To

Borrowers Who Fail Made the Same Payment in Month 2

Summary Stylized Facts About Data

- 80% of borrowers exit before month 12, 50% before month 10
- ② One third of accounts active in month 12 fail the promotion

Summary Stylized Facts About Data

- 80% of borrowers exit before month 12, 50% before month 10
- ② One third of accounts active in month 12 fail the promotion
- Payments can (mostly) be categorized into neat bins
- Promotional failure is almost surely not intentional

Summary Stylized Facts About Data

- 80% of borrowers exit before month 12, 50% before month 10
- One third of accounts active in month 12 fail the promotion
- Payments can (mostly) be categorized into neat bins
- Promotional failure is almost surely not intentional
- Sorrowers don't change their payment by much very often...
- ...including those who fail the promotion

- Small repayment mistake: missing a monthly payment
- Big repayment mistake: **failing to notice** it's month 12

- Small repayment mistake: missing a monthly payment
- Big repayment mistake: failing to notice it's month 12
- Suppose borrowers act rationally conditional on subjective beliefs

- Small repayment mistake: missing a monthly payment
- Big repayment mistake: failing to notice it's month 12
- Suppose borrowers act rationally conditional on subjective beliefs
- Someone who thinks they can't make mistakes would pay minimum for 11 months, then repay all remaining debt

- Small repayment mistake: missing a monthly payment
- Big repayment mistake: failing to notice it's month 12
- Suppose borrowers act rationally conditional on subjective beliefs
- Someone who thinks they can't make mistakes would pay minimum for 11 months, then repay all remaining debt
- Someone who thinks they might **fail to notice** would be sure to pay at least $\frac{1}{12}$ each month to "stay on track"

Borrower Beliefs About Ability To Repay Debt

- Small repayment mistake: missing a monthly payment
- Big repayment mistake: failing to notice it's month 12
- Suppose borrowers act rationally conditional on subjective beliefs
- Someone who thinks they can't make mistakes would pay minimum for 11 months, then repay all remaining debt
- Someone who thinks they might **fail to notice** would be sure to pay at least $\frac{1}{12}$ each month to "stay on track"
- Someone who thinks they might **miss payments** would pay at least $\frac{1}{11}$ to give themselves some slack– don't take big risk for small marginal payoff!

Borrower Beliefs About Ability To Repay Debt

- Small repayment mistake: missing a monthly payment
- Big repayment mistake: failing to notice it's month 12
- Suppose borrowers act rationally conditional on subjective beliefs
- Someone who thinks they can't make mistakes would pay minimum for 11 months, then repay all remaining debt
- Someone who thinks they might **fail to notice** would be sure to pay at least $\frac{1}{12}$ each month to "stay on track"
- Someone who thinks they might **miss payments** would pay at least $\frac{1}{11}$ to give themselves some slack– don't take big risk for small marginal payoff!
- Upshot: need to model borrower beliefs about both mistake probabilities

- Are boundedly rational and risk neutral Account mechanics
- But have some behavioral "quirks" Behavioral features

- Are boundedly rational and risk neutral Account mechanics
- But have some behavioral "quirks" Behavioral features
- Prefer delaying repayment, have "personal preference rate" Preference rates

- Are boundedly rational and risk neutral Account mechanics
- But have some behavioral "quirks" Behavioral features
- Prefer delaying repayment, have "personal preference rate"
- Choose a "repayment heuristic": constant planned payment until final month
- Think heuristics are fixed, but (occasionally) can change them Payment heuristics

- Are boundedly rational and risk neutral Account mechanics
- But have some behavioral "quirks" Behavioral features
- Prefer delaying repayment, have "personal preference rate"
- Choose a "repayment heuristic": constant planned payment until final month
- Think heuristics are fixed, but (occasionally) can change them Payment heuristics
- Can make two kinds of repayment mistakes: Mistake heterogeneity
 - Miss a monthly payment, in any month
 - **2** Fail to notice that it's the final month

- Are boundedly rational and risk neutral Account mechanics
- But have some behavioral "quirks" Behavioral features
- Prefer delaying repayment, have "personal preference rate"
- Choose a "repayment heuristic": constant planned payment until final month
- Think heuristics are fixed, but (occasionally) can change them Payment heuristics
- Can make two kinds of repayment mistakes: Mistake heterogeneity
 - Miss a monthly payment, in any month
 - **Pail to notice** that it's the final month
- Have beliefs about those mistake probabilities Beliefs about mistakes

Want to estimate parameters governing...

- Actual and believed probability of missing a payment
- Actual and believed probability of failing to notice end of promotion

Want to estimate parameters governing...

- Actual and believed probability of missing a payment
- Actual and believed probability of failing to notice end of promotion
- Rate of "drift" of beliefs
- "Behavioral" preferences: round payments, stdev of taste shocks, etc

Want to estimate parameters governing...

- Actual and believed probability of missing a payment
- Actual and believed probability of failing to notice end of promotion
- Rate of "drift" of beliefs
- "Behavioral" preferences: round payments, stdev of taste shocks, etc

Conditional on observables, want model borrowers to match the data w.r.t:

Categorical distribution of payment sizes (and rounding)

Want to estimate parameters governing...

- Actual and believed probability of missing a payment
- Actual and believed probability of failing to notice end of promotion
- Rate of "drift" of beliefs
- "Behavioral" preferences: round payments, stdev of taste shocks, etc

Conditional on observables, want model borrowers to match the data w.r.t:

- Categorical distribution of payment sizes (and rounding)
- Timing of successful exit from the promotion
- Rate of success in the promotion
- Frequency of missed payments

Borrower beliefs determine (subjective) best heuristic, ignoring "behavioral" factors:

Won't miss payments, won't fail to notice → pay minimum

Borrower beliefs determine (subjective) best heuristic, ignoring "behavioral" factors:

- ullet Won't miss payments, won't fail to notice \longrightarrow pay minimum
- ullet Won't miss payments, will fail to notice \longrightarrow pay 1/12 debt

Borrower beliefs determine (subjective) best heuristic, ignoring "behavioral" factors:

- Won't miss payments, won't fail to notice → pay minimum
- ullet Won't miss payments, will fail to notice \longrightarrow pay 1/12 debt
- ullet Might miss payments, will fail to notice \longrightarrow pay more than 1/12 debt

Borrower beliefs determine (subjective) best heuristic, ignoring "behavioral" factors:

- Won't miss payments, won't fail to notice → pay minimum
- ullet Won't miss payments, will fail to notice \longrightarrow pay 1/12 debt
- ullet Might miss payments, will fail to notice \longrightarrow pay more than 1/12 debt
- ullet Very low personal interest rate \longrightarrow pay whatever, doesn't matter

Borrower beliefs determine (subjective) best heuristic, ignoring "behavioral" factors:

- ullet Won't miss payments, won't fail to notice \longrightarrow pay minimum
- Won't miss payments, will fail to notice \longrightarrow pay 1/12 debt
- ullet Might miss payments, will fail to notice \longrightarrow pay more than 1/12 debt
- \bullet Very low personal interest rate \longrightarrow pay whatever, doesn't matter

Categorical distribution of payment sizes conditional on observed characteristics identifies parameters governing (distribution of) beliefs about mistakes.

Some Estimated Parameters

Param	Description	Value	Std err
π	Probability of getting to choose new plan	9.91e-2	(0.05e-2)
$ au_1$	Preference bonus: paying all remaining debt	8.430	(0.062)
χ	Perceived cost of making a monthly payment (\$)	-0.468	(0.003)
ω	Magnitude of penalty for large final payment	3.33e-5	(0.01e-5)
σ_{η}	Scale of preference shocks over payment plans (\$)	2.280	(0.011)
κ_{10}	Preference bonus: payment rounded to \$10	1.018	(0.014)
κ_{25}	Preference bonus: payment rounded to \$25	1.439	(0.016)
κ_{50}	Preference bonus: payment rounded to \$50	1.364	(0.020)
κ_{100}	Preference bonus: payment rounded to \$100	1.979	(0.011)

Critical Failure: Belief vs Reality by Income

Critical Failure: Belief vs Reality by Credit Score

Model Fit: Exit Rate By Cumulative Payment Size

What is the financial impact of deviations from perfection? How would borrowers behave if each channel were shut down?

• Actual consumers: Estimated model, as is

What is the financial impact of deviations from perfection? How would borrowers behave if each channel were shut down?

- Actual consumers: Estimated model, as is
- No overconfidence: Perceived probabilities are actual probabilities

What is the financial impact of deviations from perfection? How would borrowers behave if each channel were shut down?

- Actual consumers: Estimated model, as is
- No overconfidence: Perceived probabilities are actual probabilities
- No overconfidence or mistakes: Same, but probabilities are zero

What is the financial impact of deviations from perfection? How would borrowers behave if each channel were shut down?

- Actual consumers: Estimated model, as is
- No overconfidence: Perceived probabilities are actual probabilities
- No overconfidence or mistakes: Same, but probabilities are zero
- Perfect borrowers: As above, but no behavioral biases nor preference shocks

Perfect borrowers are guaranteed to choose the "obviously best" repayment heuristic

Measures of Financial Welfare from DI Promotion

• **Subjective ex ante value:** Value of (subjectively) "best" heuristic less value of exiting immediately (participation cost)

Measures of Financial Welfare from DI Promotion

- **Subjective ex ante value:** Value of (subjectively) "best" heuristic less value of exiting immediately (participation cost)
- Value calculation for each heuristic includes rounding preferences, etc
- Subjective borrower value is not consumer welfare

Measures of Financial Welfare from DI Promotion

- **Subjective ex ante value:** Value of (subjectively) "best" heuristic less value of exiting immediately (participation cost)
- Value calculation for each heuristic includes rounding preferences, etc
- Subjective borrower value is not consumer welfare
- Net financial benefit: Accumulated "delay value" less late fees and DI
- That's measured purely in actual money

- Estimated model fits categorical distribution of payments
- How would borrower behavior change under each counterfactual?

- Estimated model fits categorical distribution of payments
- How would borrower behavior change under each counterfactual?
- No overconfidence: Net movement into small payments... but it's a "swap"!

- Estimated model fits categorical distribution of payments
- How would borrower behavior change under each counterfactual?
- No overconfidence: Net movement into small payments... but it's a "swap"!
- No overconfidence + no mistakes: Everyone moves toward small payments, but substantial numbers still exceed 1/12

- Estimated model fits categorical distribution of payments
- How would borrower behavior change under each counterfactual?
- No overconfidence: Net movement into small payments... but it's a "swap"!
- No overconfidence + no mistakes: Everyone moves toward small payments, but substantial numbers still exceed 1/12
- Perfect borrowers: Everyone chooses "obviously best" plan. Obviously.

Payment Categorization: Actual Consumers

Payment Categorization: No Overconfidence

Payment Categorization: No Overconfidence or Mistakes

Payment Categorization: Low Risk Borrowers

Payment Categorization: Low Risk Borrowers

Payment Categorization: Low Risk Borrowers

Payment Categorization: High Risk Borrowers

Payment Categorization: High Risk Borrowers

Payment Categorization: High Risk Borrowers

Introduction Deferred Interest Data Model & Estimation Counterfactuals

CONCLUSION

Conclusion

DI provides excellent setting to study self-awareness and over-confidence. We find:

- Borrowers are both self-aware and overconfident
- Riskiest borrowers are the most overconfident and would benefit most from self-awareness
- Without biases consumers would benefit far more from DI
- Many lessons for regulators that we leave for the future

Introduction
Deferred Interest Data
Model & Estimation
Counterfactuals

STOP HERE

- Borrowers purchase a "moderate sized" consumer durable good from retailer
- At checkout, unexpectedly offered 12 month DI promotion

- Borrowers purchase a "moderate sized" consumer durable good from retailer
- At checkout, unexpectedly offered 12 month DI promotion
- Private label credit card, financed by large bank
- Can put other purchases on card, but relatively few people do

- Borrowers purchase a "moderate sized" consumer durable good from retailer
- At checkout, unexpectedly offered 12 month DI promotion
- Private label credit card, financed by large bank
- Can put other purchases on card, but relatively few people do
- Minimum monthly payment: larger of \$20 or 1% original debt
- Charged \$25 fee for each missed payment; autopay is impossible?

- Borrowers purchase a "moderate sized" consumer durable good from retailer
- At checkout, unexpectedly offered 12 month DI promotion
- Private label credit card, financed by large bank
- Can put other purchases on card, but relatively few people do
- Minimum monthly payment: larger of \$20 or 1% original debt
- Charged \$25 fee for each missed payment; autopay is impossible?
- Deferred interest accrues "in background" at relatively high rate
- Only pay DI if any debt remains after 12 months

- Borrowers purchase a "moderate sized" consumer durable good from retailer
- At checkout, unexpectedly offered 12 month DI promotion
- Private label credit card, financed by large bank
- Can put other purchases on card, but relatively few people do
- Minimum monthly payment: larger of \$20 or 1% original debt
- Charged \$25 fee for each missed payment; autopay is impossible?
- Deferred interest accrues "in background" at relatively high rate
- Only pay DI if any debt remains after 12 months
- Becomes a normal credit card after the promotion, ordinary interest

Distribution of Age of Borrowers

Distribution of Credit Score of Borrowers

Distribution of Monthly Income of Borrowers

Distribution of Credit Utilization of Borrowers

Payment Heuristics

Borrowers choose a **heuristic** from a discrete menu of options:

- Minimum: pay greater of \$25 or 1% of original debt
- Dollar-based: pay in increments of \$5
- Timing-based: pay $\frac{1}{N}$ of original debt (for N=1,...,12)

Back

Payment Heuristics

Borrowers choose a **heuristic** from a discrete menu of options:

- Minimum: pay greater of \$25 or 1% of original debt
- Dollar-based: pay in increments of \$5
- ullet Timing-based: pay $rac{1}{N}$ of original debt (for N=1,...,12)

Plan to make constant payments each month, pay any left over at end

- Believe heuristic choice is a once-and-for-all decision...
- ullet ...But actually have a small chance π to change each month

Back

Account Mechanics

- Agent enters the model at t = 0 with D_0 in debt; promotion lasts T months.
- Each month, they make a payment P_t to pay down debt: $D_{t+1} = D_t P_t$.
- DI (starting at $Z_0 = 0$) accumulates each month: $Z_{t+1} = Z_t + r_Z(Z_t + D_t)$.

Account Mechanics

- Agent enters the model at t = 0 with D_0 in debt; promotion lasts T months.
- Each month, they make a payment P_t to pay down debt: $D_{t+1} = D_t P_t$.
- DI (starting at $Z_0 = 0$) accumulates each month: $Z_{t+1} = Z_t + r_Z(Z_t + D_t)$.
- If $D_{t+1} \leq 0$, excess payment returned and the promotion ends.
- If $D_T = 0$, deferred interest is never charged to the agent.
- If $D_T > 0$, agent failed the promotion and must pay Z_T in deferred interest.

Account Mechanics

- Agent enters the model at t = 0 with D_0 in debt; promotion lasts T months.
- Each month, they make a payment P_t to pay down debt: $D_{t+1} = D_t P_t$.
- DI (starting at $Z_0 = 0$) accumulates each month: $Z_{t+1} = Z_t + r_Z(Z_t + D_t)$.
- If $D_{t+1} \leq 0$, excess payment returned and the promotion ends.
- If $D_T = 0$, deferred interest is never charged to the agent.
- If $D_T > 0$, agent failed the promotion and must pay Z_T in deferred interest.
- If a payment is missed or below a minimum threshold $P_t < \underline{P}$, a fee of M > 0 is assessed to the agent immediately.

Preferences: Costs and Benefits

Borrowers are risk neutral: maximize expected net benefits in dollars.

Two obvious costs of participation:

- Missed payment fee for missing a monthly payment
- Oeferred interest if any debt remains at end of promotion

Preferences: Costs and Benefits

Borrowers are risk neutral: maximize expected net benefits in dollars.

Two obvious costs of participation:

- Missed payment fee for missing a monthly payment
- Oeferred interest if any debt remains at end of promotion

Benefits of participation are less obvious:

Delaying repayment is valued, but how valuable?

Preferences: Costs and Benefits

Borrowers are risk neutral: maximize expected net benefits in dollars.

Two obvious costs of participation:

- Missed payment fee for missing a monthly payment
- Oeferred interest if any debt remains at end of promotion

Benefits of participation are less obvious:

- Delaying repayment is valued, but how valuable?
- Borrowers had some plan for payment before being offered DI- what was it?
- What is the rate of interest the borrower faces if they decline the DI promotion?

- Survey of how consumers paid for purchases: cash, card, etc
- With some demographic and financial information

- Survey of **how** consumers paid for purchases: cash, card, etc
- With some demographic and financial information
- Customers who would have paid with cash (etc) would "pay" about 0% interest
- Same for customers who would pay with card and not revolve debt

- Survey of how consumers paid for purchases: cash, card, etc
- With some demographic and financial information
- Customers who would have paid with cash (etc) would "pay" about 0% interest
- Same for customers who would pay with card and not revolve debt
- Credit card interest rates: use bins of 0.1%, 3%, 8%, 13%, 18%, 23%

- Survey of **how** consumers paid for purchases: cash, card, etc
- With some demographic and financial information
- Customers who would have paid with cash (etc) would "pay" about 0% interest
- Same for customers who would pay with card and not revolve debt
- Credit card interest rates: use bins of 0.1%, 3%, 8%, 13%, 18%, 23%
- **Upshot:** estimate multinomial logit on SCPC, generate **predicted distribution** of "personal interest rate" **conditional on observables**

- Survey of how consumers paid for purchases: cash, card, etc
- With some demographic and financial information
- Customers who would have paid with cash (etc) would "pay" about 0% interest
- Same for customers who would pay with card and not revolve debt
- Credit card interest rates: use bins of 0.1%, 3%, 8%, 13%, 18%, 23%
- Upshot: estimate multinomial logit on SCPC, generate predicted distribution of "personal interest rate" conditional on observables
- In model, solve & simulate accounts for each rate, apply predicted weights

Behavioral Preferences

Observed borrowers don't act "rationally," so need some "quirky parameters":

• Clustering at round payments: bonus to utility κ_{10} , κ_{25} , κ_{50} , κ_{100}

Behavioral Preferences

Observed borrowers don't act "rationally," so need some "quirky parameters":

- Clustering at round payments: bonus to utility κ_{10} , κ_{25} , κ_{50} , κ_{100}
- Sudden exit: bonus to paying all debt of τ_1 (participation cost)
- ullet Making payments takes time: utility penalty of χ for each planned payment

Behavioral Preferences

Observed borrowers don't act "rationally," so need some "quirky parameters":

- Clustering at round payments: bonus to utility κ_{10} , κ_{25} , κ_{50} , κ_{100}
- Sudden exit: bonus to paying all debt of τ_1 (participation cost)
- ullet Making payments takes time: utility penalty of χ for each planned payment
- ullet Making large final payment is costly: "fake concave utility" with penalty on planned final payment above normal, quadratic coefficient ω

Behavioral Preferences

Observed borrowers don't act "rationally," so need some "quirky parameters":

- Clustering at round payments: bonus to utility κ_{10} , κ_{25} , κ_{50} , κ_{100}
- Sudden exit: bonus to paying all debt of τ_1 (participation cost)
- ullet Making payments takes time: utility penalty of χ for each planned payment
- ullet Making large final payment is costly: "fake concave utility" with penalty on planned final payment above normal, quadratic coefficient ω
- Unobserved heterogeneity: iid shocks to utility for each heuristic, dist'd $N(0, \sigma_{\eta})$
- \bullet Occasionally change heuristics: "Calvo fairy" taps borrower w/ probability π

• Each borrower has idiosyncratic probabilities of *missing* a monthly payment and *failing to notice* it's the final month, depending on (un)observed characteristics.

- Each borrower has idiosyncratic probabilities of *missing* a monthly payment and *failing to notice* it's the final month, depending on (un)observed characteristics.
- Borrower i has observable characteristics x_i .
- "Real miss type" is $\theta_i = \alpha \cdot x_i + \epsilon_i^s$.
- "Real fail type" is $\zeta_i = \mu \cdot x_i + \epsilon_i^f$.

- Each borrower has idiosyncratic probabilities of missing a monthly payment and failing to notice it's the final month, depending on (un)observed characteristics.
- Borrower i has observable characteristics x_i .
- "Real miss type" is $\theta_i = \alpha \cdot x_i + \epsilon_i^s$.
- Real miss probability is $\varsigma_i = 1 \Phi(\theta_i)$.
- "Real fail type" is $\zeta_i = \mu \cdot x_i + \epsilon_i^f$.
- Real fail probability is $\mathbf{1}(\zeta_i < 0)$; a **one time event** w/ prob $\varphi_i = 1 \Phi(\mu \cdot x_i)$.

- Each borrower has idiosyncratic probabilities of *missing* a monthly payment and *failing to notice* it's the final month, depending on (un)observed characteristics.
- Borrower i has observable characteristics x_i .
- "Real miss type" is $\theta_i = \alpha \cdot x_i + \epsilon_i^s$.
- Real miss probability is $\varsigma_i = 1 \Phi(\theta_i)$.
- "Real fail type" is $\zeta_i = \mu \cdot x_i + \epsilon_i^f$.
- Real fail probability is $\mathbf{1}(\zeta_i < 0)$; a **one time event** w/ prob $\varphi_i = 1 \Phi(\mu \cdot x_i)$.
- Error terms mean zero, normally distributed with respective stdevs of σ_{α} and 1, correlation coefficient is ρ_{A} : little and big mistakes can be correlated

Model borrowers don't know their true ς_i nor φ_i , but have *beliefs* about them:

• Each borrower has **constant** belief about their probability of missing a payment.

- Each borrower has binary beliefs about failing to notice month 12
- ullet Beliefs about failure **drift** at rate δ over time

Model borrowers don't know their true ς_i nor φ_i , but have *beliefs* about them:

- Each borrower has **constant** belief about their probability of missing a payment.
- "Perceived miss type" is $\widetilde{\theta}_i = \beta \cdot x_i + \xi_i^s$.
- Perceived miss probability is $\widetilde{\varsigma}_i = 1 \Phi(\widetilde{\theta}_i)$.
- Each borrower has **binary beliefs** about failing to notice month 12
- ullet Beliefs about failure **drift** at rate δ over time

Model borrowers don't know their true ς_i nor φ_i , but have *beliefs* about them:

- Each borrower has **constant** belief about their probability of missing a payment.
- "Perceived miss type" is $\widetilde{\theta}_i = \beta \cdot x_i + \xi_i^s$.
- Perceived miss probability is $\widetilde{\varsigma}_i = 1 \Phi(\widetilde{\theta}_i)$.
- Each borrower has binary beliefs about failing to notice month 12
- ullet Beliefs about failure **drift** at rate δ over time
- "Perceived fail type" is $\widetilde{\zeta}_{it} = (\nu + t\delta) \cdot x_i + \xi_i^f$.
- Perceived fail probability is $\widetilde{\varphi}_{it} = \mathbf{1}(\widetilde{\zeta}_{it} < 0)$.

Model borrowers don't know their true ς_i nor φ_i , but have *beliefs* about them:

- Each borrower has **constant** belief about their probability of missing a payment.
- "Perceived miss type" is $\widetilde{\theta}_i = \beta \cdot x_i + \xi_i^s$.
- Perceived miss probability is $\widetilde{\varsigma}_i = 1 \Phi(\widetilde{\theta}_i)$.
- Each borrower has **binary beliefs** about failing to notice month 12
- ullet Beliefs about failure **drift** at rate δ over time
- "Perceived fail type" is $\widetilde{\zeta}_{it} = (\nu + t\delta) \cdot x_i + \xi_i^f$.
- Perceived fail probability is $\widetilde{\varphi}_{it} = \mathbf{1}(\widetilde{\zeta}_{it} < 0)$.
- Error terms mean zero, normally distributed with respective stdevs of σ_{β} and 1, correlation coefficient is ρ_{B}

- Real fail prob has no unobserved heterogeneity because it's a one time event
- Can't differentiate between predestination and probability within a person

- Real fail prob has no unobserved heterogeneity because it's a one time event
- Can't differentiate between predestination and probability within a person
- ullet Perceived fail prob is **binary** because behavioral change is so sharp w.r.t \widetilde{arphi}_i
- ullet Can't differentiate behavior between $\widetilde{arphi}_i=10\%$ vs $\widetilde{arphi}_i=100\%$

- Real fail prob has no unobserved heterogeneity because it's a one time event
- Can't differentiate between predestination and probability within a person
- ullet Perceived fail prob is **binary** because behavioral change is so sharp w.r.t \widetilde{arphi}_i
- ullet Can't differentiate behavior between $\widetilde{arphi}_i=10\%$ vs $\widetilde{arphi}_i=100\%$
- DI accumulates to **hundreds** of dollars; if there's even a 10% chance of **failing to notice**, it's not worth risking it. Stay on track, pay at least $\frac{1}{12}$.

- Real fail prob has no unobserved heterogeneity because it's a one time event
- Can't differentiate between predestination and probability within a person
- ullet Perceived fail prob is **binary** because behavioral change is so sharp w.r.t \widetilde{arphi}_i
- Can't differentiate behavior between $\widetilde{\varphi}_i = 10\%$ vs $\widetilde{\varphi}_i = 100\%$
- DI accumulates to **hundreds** of dollars; if there's even a 10% chance of **failing to notice**, it's not worth risking it. Stay on track, pay at least $\frac{1}{12}$.
- Actual chance to fail to notice: 35-80%, depending on characteristics
- ullet $\widetilde{arphi}_{it}=1$ represents borrower thinking it's **possible** to fail to notice

- ullet Conditional frequency of missed payments identifies lpha
- \bullet Conditional frequency of failed promotion identifies μ

- \bullet Conditional frequency of missed payments identifies α
- \bullet Conditional frequency of failed promotion identifies μ
- ullet Correlation of # of missed payments vs promotion success identifies $ho_{\mathcal{A}}$
- \bullet Frequency of round payments identifies κ

- ullet Conditional frequency of missed payments identifies lpha
- ullet Conditional frequency of failed promotion identifies μ
- ullet Correlation of # of missed payments vs promotion success identifies $ho_{\mathcal{A}}$
- ullet Frequency of round payments identifies κ
- "Early exit rate" identifies τ_1
- ullet Overall slope of payment size w.r.t time identifies π
- ullet Conditional payment switching behavior identifies δ

- ullet Conditional frequency of missed payments identifies lpha
- ullet Conditional frequency of failed promotion identifies μ
- ullet Correlation of # of missed payments vs promotion success identifies $ho_{\mathcal{A}}$
- ullet Frequency of round payments identifies κ
- "Early exit rate" identifies au_1
- ullet Overall slope of payment size w.r.t time identifies π
- ullet Conditional payment switching behavior identifies δ
- ullet Conditional frequency of small payments above minimum identifies ω

